Laws of the Iterated Logarithm for Triple Intersections of Three Dimensional Random Walks
نویسنده
چکیده
Let X = {Xn, n ≥ 1}, X ′ = {X ′ n, n ≥ 1} and X ′′ = {X ′′ n, n ≥ 1} be three independent copies of a symmetric random walk in Z3 with E(|X1| log+ |X1|) < ∞. In this paper we study the asymptotics of In, the number of triple intersections up to step n of the paths of X , X ′ and X ′′ as n→∞. Our main result is lim sup n→∞ In log(n) log3(n) = 1 π|Q| a.s. where Q denotes the covariance matrix of X1. A similar result holds for Jn, the number of points in the triple intersection of the ranges of X , X ′ and X ′′ up to step n.
منابع مشابه
Moderate deviations and laws of the iterated logarithm for the volume of the intersections of Wiener sausages
Using the high moment method and the Feynman-Kac semigroup technique, we obtain moderate deviations and laws of the iterated logarithm for the volume of the intersections of two and three dimensional Wiener sausages.
متن کاملModerate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks
We study moderate deviations for the renormalized self-intersection local time of planar random walks. We also prove laws of the iterated logarithm for such local times
متن کاملModerate and Small Deviations for the Ranges of One-dimensional Random Walks
We establish the moderate and small deviations for the ranges of the integer valued random walks. Our theorems apply to the limsup and the liminf laws of the iterated logarithm.
متن کاملModerate Deviations and Laws of the Iterated Logarithm for the Local times of Additive Lévy Processes and Additive Random Walks
We study the upper tail behaviors of the local times of the additive Lévy processes and additive random walks. The limit forms we establish are the moderate deviations and the laws of the iterated logarithm for the L2-norms of the local times and for the local times at a fixed site. Subject classifications: 60F10, 60F15, 60J55, 60G52
متن کامل